Maxwell- Boltzmann Distribution

(Post Graduate Level)

Paper Code-MPHYCC-8

> By

Dr. Akhilesh Kumar Gupta

Assistant Professor
Department of Physics
Patna Science College
Patna University, Patna

Maxwell-Boltzmann Distribution Law

Maxwell-Boltzmann statistics is classical statistics, which is given for the classical particles.
Following are the basic postulates of MB statistics:

- The associated particles are distinguishable.
- Each energy state can contain any number of particles.
- Total number of particles in the entire system is constant.
- Total energy of all the particles in the entire system is constant.
- Particles are spinless. Example: gas molecules at high temperature and low pressure.

Classical Particles: Classical particles are identical but far enough to be distinguishable. The wave functions of the classical particles do not overlap on each other.

Distinguishable: Two particles are said to be distinguishable if their separation is large in compare to their De-Broglie wavelength. For distinguishable particles you would know if two particles changes their places.

```
E=Total energy of the entire system
    = Constant.
N=Total number of identical distinguishable
particles=Constant
V=Total volume =Constant
```


We now focus on the number of particles siting in given energy levels $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \ldots \ldots \varepsilon_{n}$ which are available within the system. The energy levels are fixed for the system.

The number of particles in each energy levels are variable and given by n_{1}, n_{2}, n_{3} n_{r}.

The number of ways to attained a given microscopic state is given by

$$
\begin{equation*}
\omega=\frac{N!}{n_{!}!n_{2}!\ldots \ldots n_{r}!} \tag{1}
\end{equation*}
$$

We need to know the distribution of the particles in different energy levels (as stated above) that maximize the value of ω.
The combination result in most probable microstate and in this most probable state the system is considered as the equilibrium state.

Now,

$$
\begin{equation*}
\log \omega=\ln \frac{n!}{\prod_{i=1}^{i=r} n_{i}!} \tag{2}
\end{equation*}
$$

For maximum value of ω instead of dealing with ω deal with logarithmic of ω.

$$
\begin{equation*}
\log \omega=\log N!-\sum_{i=1}^{i=r} \ln n_{i}! \tag{3}
\end{equation*}
$$

Using Stirling's approximation

$$
\begin{equation*}
\log x!\approx x \log x-x \tag{4}
\end{equation*}
$$

Equation (3) can be expressed using above approximation as

$$
\log \omega=N \log N-\sum_{i=1}^{i=r}\left[n_{i} \ln n_{i}-n_{i}\right]
$$

Taking the derivative of the above equation,

$$
\begin{align*}
& \delta \log \omega=-\sum_{i=1}^{i-r} \delta n_{i} \ln n_{i}+n_{i} \times \frac{1}{n_{i}}-\delta n_{i}=0 \\
& \sum_{i=1}^{\sum-r n_{i} \ln n_{i}=0} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \sum n_{i}=N_{n} \text { Constant } \\
& \sum \delta n_{i}=0 \tag{6}
\end{align*}
$$

(The sum of all the changes in the system is zero)
Total energy,

$$
E=\sum \varepsilon_{i} n_{i}=\text { Constant }
$$

On differentiating the above equation

$$
\begin{equation*}
\sum_{i=1}^{i=r} \varepsilon_{i} \delta n_{i}=0 \tag{7}
\end{equation*}
$$

To maximize the function in (5) subjected to constrain (6) and (7) let us use Lagrange's method of undetermined multipliers equation (6) multiplied by α and equation (7) is multiplied by β and the adding equation (5), (6) and (7) we get,

$$
\begin{align*}
& \sum\left[\ln n_{i}+\alpha+\beta \varepsilon_{i}\right] n_{i}=0 \tag{8}\\
& \sum\left[\ln n_{i}+\alpha+\beta \varepsilon_{i}\right]=0 \\
& \ln n_{i}=-\alpha-\beta \varepsilon_{i} \\
& n_{i}=e^{-\alpha} \cdot e^{-\beta \varepsilon_{i}} \tag{9}
\end{align*}
$$

$=$ The number of particle in $i^{i^{\text {th }}}$ level

$$
\sum_{i=1}^{i=r} n_{i}=e^{-\alpha} \sum_{i=1}^{i=r} e^{-\beta \varepsilon_{i}}=N
$$

$$
\begin{equation*}
e^{-\alpha}=\frac{N}{\sum_{i=1}^{\mid-1} e^{-\beta e_{i}}} \tag{10}
\end{equation*}
$$

$$
e^{-\alpha}=\frac{N}{p}
$$

where,

$$
\begin{gather*}
p=\sum_{i=1}^{i=1} e^{-\beta \varepsilon_{i}} \\
n_{i}=\frac{N}{p} e^{-\beta \varepsilon_{i}} \tag{11}
\end{gather*}
$$

$$
\begin{align*}
\beta & =\frac{1}{k_{\beta} T} \\
n_{i} & =\frac{N}{P} e^{\frac{-\varepsilon_{i}}{k_{\beta} T}} \tag{12}
\end{align*}
$$

The above expression helps us to determine the number of particles in most probable micro-states. The expression is known as Maxwell- Boltzmann statistics expression.

The probability of a particle to occupy the energy state ε_{i} is given by Maxwell-Boltzmann function

$$
\begin{gather*}
f\left(\varepsilon_{i}\right)=\frac{n_{i}}{g_{i}}=\frac{1}{e^{\alpha+\beta \varepsilon_{i}}} \tag{13}\\
f_{M B}(\varepsilon)=A e^{-\varepsilon / k_{\beta} T} \tag{14}
\end{gather*}
$$

Where,

$\mathrm{A}=$ Constant

A depends on the number of particles in the system and plays the same role like normalization constant.

$\begin{aligned} k_{\beta} & =\text { Boltzmann Constant } \\ & =1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\ & =8.617 \times 10^{-3} \mathrm{eV} / \mathrm{K} \end{aligned}$	Graphical representation of Maxwell-Boltzmann Distribution
$g_{i}=$ Number of quantum states of the $\mathrm{i}^{\text {th }}$ energy level	

